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ABSTRACT

The problem of determining the pressure gradient required to maintain
a specified wall shear in a boundary layer for a given initial shear profile
is treated by solving the Crocco equation. It is found that analytic solutions
are readily obtainable when thie problem is restricted to the case of continuous
wall shear. To illustrate the method the case of constant wall shear has been
treated for initial profiles obtained from suction and injection over a flat
plate, assuming that the suction or injection is terminated at the station
of the initial profile. Both the pressure gradient and the downstream shear

profile has been computed in each case.
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NOMENCLATURE

length parameter

free stream velocity at outer edge of initial profile

free stream velocity at station X

velocity parallel to surface

velocity normal to surface

dynamic pressure

density

kinematic viscosity

Reynolds No. U_L/v

dimensionless coordinate along surface x = X/L
dimensionless coordinate normal to surface vy = (Y/L)Jﬁ
u/u,

(v/u), R

dimensionless dynamic pressure p = P/pUi

shear du/dy

X1/3

u/g

wall shear ©(x,0)

B/(972)1/3
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INTRODUCTION

In view of the influence of the boundary layer on the performance
characteristics of flight vehicles, any method of controlling this flow
region is of great interest. Skin friction, heat transfer and the location
of the separaticn point are properties of the boundary layer which play a
direct role in performance. Of these, the first two are reduced by a
positive pressure gradient or by the injection of fluid normal to the wall,
while separation is delayed by a negative pressure gradient and wall
suction. Optimization of these properties therefore implies a compromise.
In particular it may be desirable to reduce skin friction and heat
transfer by injection over the frontal area of body where pressure gradient
is often predetermined by other requireménts. After the termination of injection or
suction these properties may be kept at a suitably low level by the
application of an appropriate pressure gradient. At the same time the
pressure gradient must not be such as to unduly hasten separation so that
a knowledge of the precise effect of the pressure gradient is needed. We
are thus faced with the problem of being given an initial boundary layer
flow and subsequently determining the pressure gradient required to maintain
a specified wall shear from then on.
One of the earlier attempts to continue a boundarylayer determination from

(1)

given initial conditions was that of Goldstein who assumed an initial
velocity profile together with a free stream pressure gradient and calculated
the wall shear. Unfortunately the convergence properties of his solution were
poor. This may have been caused by two factors in his analysis: a) a dis-
continuity was permitted in the wall shear at the initial station by leaving

initial shear and pressure gradient completely arbitrary. In fact, the study

of the behavior of the boundary layer in the neighborhood of such discontinuities

was one of the purposes of the analysis. b) The initial velocity profile was




specified as a power series in y, a variable with a range 0 <y < », It was
thus impossible to represent the entire profile by a small number of terms
valid over the entire range of y. While the approach of Goldstein is
maintained, the above difficulties are avoided in the present paper. The

firgt ig bypasged by allowin

_______ Jr===%% =

g discontinuities in the ghear derivativeg,
but not in the shear itself. This still covers a wide variety of applicationms,
among them the determination of downstream profiles after injection or suction
is suddenly terminated. The second difficulty is circumvented by working with
the Crocco equation which employs the velocity as an independent variable.
Since the range of the dimensionless velocity is finite, 0 < u < 1 it becomes
feasible to represent a wide variety of initial profiles by polynomials in u
valid over the entire profile. The author wishes to thank Dr. Antonio Ferri

for suggesting this problem,

BASIC EQUATIONS

For two dimensional, incompressible, viscous flow over a plane surface

the Prandtl boundary layer eqs. hold:

cont. U , oV _
§i+§(—’o (D
X momentum 2
U L o0 _ ok U
Xt " x*TV%oE @)
y momentum oP _
=0 (3)

As pointed out in the introduction, however, the physical or X, Y plane is
inconvenient for our purposes because of the difficulty of representing an

initial condition in these variables. Furthermore, since it is eventually




desired to set boundary conditions in terms of the velocity derivative at the
wall (UY)Y=O’ it seems appropriate to work with the shear as the dependent

)

variable It appears therefore that the Crocco transformation(z) would be
suitable for the purpose at hand. The velocity is first non-dimensionalized
with reepect tc U, , the free siream velocity, at an initial station and a
reference length L is introduced which may be characteristic of the surface

geometry or perhaps a measure of the distance of the initial station from a

leading edge. We introduce the dimensionless shear variable

_ du
(‘.p(x, U) = ay (4)
together with the transformation
u=ux’, y)
x = x’ (5)
of which the inverse 1is:
u
y' = j %3 (53)
0

primes referring to the physical plane. Upon elimination of v with the aid
of the continuity equation the resulting transformed momentum equation for

(3)

the dimensionless shear ©® is the well known Crocco eq.

oo =up -p O (6)

"uu X X'u

Like the heat conduction equation, this equation is parabolic in character,

which means that conditions specified at a given station, x, have no upstream



influence. It is, therefore, sufficient for the determination of a solution
to set an initial condition in the form of an initial shear profile ®(0, u)
at a station which shall serve as the origin x = 0, together with boundary

conditions.

BOUNDARY CONDITIONS

The boundary conditions to be set for the problem treated here differ
somewhat from those commonly used in boundary layer theory. The shear at
the wall, which is generally the quantity to be determined, is here specified

beforehand:
o(x, 0) = T(x) (7N

the object being to determine the free stream conditions required to obtain
the given wall shear. We see, therefore, that the pressure gradient
characterising the free stream does not appear as a known function in eq. (6).
To solve the Crocco equation, P, will be written in a convenient functional
form containing undetermined constants. It is to be understood that the
general solution for ® will be in terms of these constants. Once such a
solution is obtained, the condition that v = 0 at the wall requires that Py

satisfy the relation
Pu
Py = GFly=0 = (®yu=0 (8)

which serves to determine the constants appearing in P

The boundary condition at the junction of the free stream with the viscous
layer requires some special consideration. It has been customary to state
specifically that ® = 0 when u = u, the velocity at the outer edge of the

layer. Consider, however, the simpler but analogous problem of heat conduction



in a semi-infinite rod. When the initial temperature approaches a finite value
as y — @, it is only necessary to specify the boundary value of the temperature
at y = 0. No specification is imposed at y — . 1Instead the solution is
required to be bounded and regular at infinity. The resultant solution for

the temperature will then approach the ial temperaiure as y — ®. This

is an expression of the physical situation that conditions at y = 0 cannot

in a finite time influence the temperature of the rod infinitely far away

by conduction. Like heat conduction the diffusion of vorticity from the wall

is a parabolic phenomenon. Therefore, if the shearing stress in an initial
profile approaches zero as y becomes infinite,we may suppose that in the absence
of discontinuities at the outer edge of the viscous layer the shear will auto-
matically approach zero in subsequent downstream profiles. This means that
aside from an appropriate restriction on the boundedness or regularity of @

as y @ @ for x 2 0 we are not required to set an explicit boundary condition

at the outer edge of the boundary layer. 1In this context the requirement that

a solution be free of singularities as y — ® is the mathematical counterpart

of the physical requirement that there be no external disturbances in the

free stream just at the outer edge of the boundary layer.

To insure the proper behavior of the shear profile, i.e. lim @(x, u) = 0,

u—'ue

the initial profile cannot be completely arbitrary. To begin with as we have
already implied, we must require ©(0, 1) = 0, Sufficient conditions to obtain
proper solutions have been investigated by Reihnboldt(h) and discussed by
others(s). Unfortunately a formulation of the necessary conditions is not

yet available and our principal guide to the correctness of a given initial

profile must still be the plausibility of the results obtained. It is proposed

in this paper that ©(0, u) be represented by a power series in u

(0, u) = ZCnun (9)
s}



the coefficients Cn being subject to the conditions

a) (0, 1) =0

u
b) The variable y = f (®p/u)du is single valued.

o

¢) y—2® asu-1
For most practical applications the series is terminated and ©(0, u) is
represented by a polynomial in u for 0 < u < 1. Finally the wall shear

1/3

is given as a power series in x , 1.e.:

p(x, 0) = >j fnxn/ 3 (10)
O

The reason for this particular choice in the form of the wall shear will

become evident when the solution for ® is considered.

SOLUTION OF THE CROCCO _EQUATION

Although our solution is required to be continuous at the outer edge of
the boundary layer to be acceptable on physical grounds no such stipulation
is made at the wall. Since initial and boundary conditions are arbitrarily
specified along two intersecting lines discontinuities may occur in ¢ and its
derivatives at the point of intersection, which in this case is taken as the

(1), (&

origin. FEmploying a technique used by Goldstein specifically to

investigate boundary layers with shear discontinuities at the wall, we introduce

new coordinates:

E = x B = u/g (11)
in terms of which the Crocco eq. (6) becomes:

- _ p° - (12
3cp2cp,,3f3 pEw - B9, - 3%p 0 (12)



The pressure gradient Py will be represented in the general form:

P, = Z a " (13)
(o]

®(E, B) = ) 9 (B)E" (14)

n

of\/js

After substitution of eq. (14) into (11) and equating the coefficients of

like powers of £, equations are obtained for the P, -

3 (B) + Bwl(B) = 0

/! 2 Y4 U4 _ V4
3ial + 8% + (60, W - B)p = - 3A ©)
(15)

,‘6’2__// — _ 7
3v%, + g° cp + (69 CD -0y = - 3A % 4

n-1 n-k

N I

- 32‘1“15@ 1k SRS CkachCpn-j-k}
=]_ j=0

To translate the boundary and initial conditions into boundary conditions
for ®, we note first that in the x, u plane lines of B = const. are a family
of curves passing through the origin. The wall corresponding to g = 0 while

the u axis is approached as B —, £ — 0 with u finite. Setting g = 0 in eq. (14)

and comparing it with the boundary condition eq. (10) we immediately obtain

© (0) = £ (16)



The second condition is found by writing eq. (14) in the form

o(E, B) = u (17)

which atter letting B tend to infinity and comparing with eq. 9 yields

@ _(B)
n [59].

6—:00

(18)

Equations (15) begin with a non-linear equation for P, followed by inhomo-
geneous linear equations for qh in which ¢B and its derivatives appear as
coefficients. Thus, unless P, is simple in form it would be necessary to resort
to numerical methods to solve the system. From the boundary condition eqs. (16)
and (18) we see that qb(O) = fo and 122 P, = Co' If we limit ourselves to cases
for which the wall shear is continuoﬁs at the origin i.e.: for which fo = CO = T,

it is evident that a solution for q% satisfying initial and boundary conditions

is:
P =T (19)

In this event the differential equation for ¢, becomes:

2. It

3% + 82q - By =0 (20)

By inspection it can immediately be seen that one solution to eq. (20) is
¢ = B and that a complete solution is obtained after application of eqs. (16)

and (18)
ooe—BS /9T2
@ = Cp+ B —F dg (21)



In the analysis that follows we shall limit ourselves to the case of constant

wall shear, i.e.:

f =7
o
(22)
f =90 n =1
n
for which we have
=GB (23)
The equations for subsequent function mn may then be written
2 7 2 _
3% + %9, - npy_ = r_(B) (24)
where
n-1 n-k
_ : Yol % 1
rn(B) - 3Ao@ n-1 " Bkéi {Akqﬁ-l-k + qk,igqﬁqh-k-jj (25)
= J=

In view of the boundary condition expressed by eq. (18) we introduce the new

variable wn = qh/Bn obtaining from eq. (24)

2 u 2 =
37y, + (8% + 2Dy b= (® (26)
. . (7)
for which two homogeneous solutions may be found
(1)_ ,1-n _ {1-n & g*
e N N U T
27)
2)_ ,n_{ n 2 g1
llljn =B 1Fl1\ 37 32 ;%—J



lFlia, b, z} representing the confluent hypergeometric function. Knowing the
homogeneous solution the complete solution to eqs. (26) or (25) may be written

forn =2

2y2/3 ¢ -G ¢
o ® =10 +EY O+ —y (O Ers ([Te8r ()7 (R)ag ) a  @28)
o "n\ oL/ - b
where
N VICL R
H(O = GRisE 5, - @)
[ 2
Yn(g) = lFlJL- 3 ?, = C‘B}

Application of the boundary condition at the wall eq. (16) yields in view

of the restriction eqs. (22) representing the constancy of the wall shear

E =0 (29)

The requirement of v = 0 at the wall, eq. (8) together with eqs. (13) and (29)

determine the coefficients An appearing in the pressure gradient, Thus,

e, = - N -1
CRED WTOCE B S S v
[} 1 (97%) 1
or
A = ——— (31)
a (9Tg)1/3 n+l

10




It now remains to determine Dn by substitution of eq. (28) with En = 0 into

the initial condition eq. (18) and solving for Dn'

n
EY 1“(1+—) G
r(2/3) ! 3
- o™ e - o f U‘ (@)Y (GePag ba | @2)
. . . 1/3
where we note that since r contains the coefficients Do’ Dn-l(Do = (9T2) T,with
D, = (9T2)1/BCT) the constants Dn may be evaluated successively. The complete

solution for ¢, (B) in particular is more readily arrived at by direct consideration

of eq. (15) for n = 2.

37D°
- (9T2)2/3 (33)

3¢ + B9 - 2B%

2
By inspection a particular solution is seen to be - DfBQ/ZT(9T2) /3 so that

the complete solution after setting E, = 0 is:

2 <2

©(0) = BE(O) - - (34)

D, being determined from the boundary condition eq. (32)

<
b, = (9797 LR [ - 1] (35)

Evaluating r3({) and employing recursion relations for the functioms ,F, we

have
o 3D )
(0 = - PP O 4 s 2O (36)
Fa1(0) = 1+ (W6CN B - 5 5 -C+ H1-6C)C R 5 1 ¢
Fs Q) =¢

11



@ () is then obtained from eq. (28) with n = 3

B0 = D)) - %O B, L (0 - Fe (0]
where in general
_r3 Ql 3
o Tyer (@i
= | o ’
%59 =y F(G) =
similarly ¢, ({) may be evaluated
%(0) = DH(O) - Y (Of2Re, | (0 + §c4,e<g)
4
- Bl 20 + Mo, (0}
for which
Fy 1(0) = 1+ H(Q) + 2CHs(Q)
Fy 2(0) = B (0) + 2K (0K (Q)
Fs,3(0) = C+ 2K (0) + (Va6 1) + 20(¥aG 1)
F4,4(€) = YsGa’e)[ + ZQ(YQG:s,z)”
Carrying out the differentiations indicated for F4 5 and F4,4 we have in
general e C 3
Iy, (@eBag
/- o ’ 7
(1,6, D" = Y06 (O - Bt ?g) fY @F, (@efag + 1 (0

12

(37)

(38)

(39)

(40)



Finally the coefficients D; and D; are evaluated from eq. (32)

97° T 3 _1 /
= T/l T ey T e, (%) - 2(”)/]

(41
2\ 4/3 2 A ]
- & %(4/%”31[04 - %(@‘ﬁ,lm + 126 2 (=) - BERG, o (=) + Hhe, 4<°°))J

Although the expressions for n > 4 are increasingly complex,no qualitatively
new features are introduced and higher order terms may be evaluated in the

same manner as .

EVALUATTON OF THE FUNCTIONS G, J.(g)
2

The formulation presented above has the advantage of yielding solutions
for qh(B) in closed form. Unfortunately the integrals appearing in the form
of G 1 J(Q) are generally too complex to be evaluated analytically. However,
recursion relations materially reduce the number of functionms Hh(g) to be
computed and a careful consideration of the specific form of the double integrals
involved indicates that the numerical evaluation of Gi’j(g) is quite feasible.

An immediate difficulty encountered if we simply attempt to evaluate the
first integral of Gi,' is the magnitude of the exponential term. Since Gi,
approaches its asymptotic value closely only for { > 5 it is evident that we
would be forced to compute numbers of the magnitude of exp. (100) and larger,

making evaluation by computers impractical. 1If on the other hand we deal

directly with the function

1 - 'st Gy (G)F )d (42
E 1’J.(C) = e e i(gl i’j(gl G )

[o]

13




this difficulty may be circumvented. Breaking the field of integration into

N small fields of extent A{ and writing

_ 3 NAC 5
BL, () = o (O lN e Y (G)F; ((G)dG 43)

we note that this may be further broken down.

NAC ] 1

EL, (N) = o (YOO r Ry, (@)F, (GG + NP -LO-DACR g w1y (an

If AC is sufficiently small, the first integral on the right side of eq. (44)

may be approximated to obtain

)
EI. .(n) Q,e'i[NACJS-[(N—%)AJS

i,3 Y1[(N-%)AQJFi’j[N-%)Ag]Ag +

i
+ e-iENAQJS-E(N-1>A€33}EIi ;-1 (45)

Lae
with EI (1) = e 8 (—QOF (‘S£29AQ

For any given step Al the exponentials involved are now considerably smaller
and EIi J_(C) may be obtained through a step by step procedure. Gi J.(C) is
b >

obtained by direct numerical integration of
(G
) = f §§?é‘““ (46)
o

Conveniently the functions EIi 3 evaluated in the above manner are precisely
2

the functions appearing in (YiGi J.)' and (YiGi j)” eqs. (40) which must be

2 >

computed for the Gi+1,j etc.

For this paper the Gi § have been computed on an IBM 1620 computer and

3

are presented in Table 1 and Figure 3. Estimated accuracy is within two

14



percent for the chosen interval of A{ = .05.

APPLICATIONS

. . . ] . 8) . ,
The continuation of the asymptotic suction proflle( ) is a particularly
ic above theory.. The initial chear profile is given

exactly by the expression

®(0,u) = 2(1-u) (47)

The characteristic length chosen is the distance from the leading edge of

the plate to the position at which the asymptotic form of the profile is to

all intents and purposes reached(g). Downstream of the profile represented

by eq. (47) the uniform suction is terminated and shear profiles for x = .2 and
.4 have been computed and presented in Fig. (1). The pressure gradient for

constant wall shear ©(x,0) = 2 is in this case

/3

P, = - -——2175{6.6039 - 11.014x1/3 + 11.579x2 -5.771x + ...] (48)

(36)
Terms up to ¢ ({)E3 were used in computing the shear, a third order expression
in this instance giving better results than a fourth order one. The computation
of ¢ involved a small difference between two large numbers occurring in the
coefficient of Y; thus requiring very high accuracy in the determination of
Gi’j(g). This situation does not arise however in the determination of Py for
which terms up to TD4§3/(9T2)1/3 are used. As a check u, was determined by

integrating eq. (48) for Py and employing the Bernoulli relation for the outer

edge of the boundary layer.

N|mﬁm
[}
N

p + (49)

From Fig. (1) it is seen that the value of u for which © becomes zero agrees

15




very well with u, obtained from eq. (49) thus bearing out the remarks in the
section dealing with boundary conditions.

A second application of importance is the continuation of a profile on

(10)

a flat plate with injection up to our initial station at a velocity

*
Vy = - ChU 2] R
(50)
or v=-C/2
q
For this particular case we have chosen Cz = - % with L again chosen as the

distance from the leading edge to the initial station. A cubic polynomial in u
was found to provide a good fit to the initial profile as seen in Fig. (2).
Again terms up to @ E°were used in computing downstream profiles at x = A,

.8 and 1.2, The pressure gradient required for constant wall shear was found

to be for @ = .175:

p = —I3 [ ogae + .1854x> - L09722x2/3 - .02677x] (51)

X (972)l/3

It is interesting to note that the P is initially negative for the suction
profile and positive for the injection profile. This is to be expected on
physical grounds since in the suction profile we would expect in the absence
of a pressure gradient that vorticity would tend to diffuse away from the wall
where it is highest. To maintain the vorticity or shear we would therefore need
a drop in pressure. For the injection profile the maximum vorticity is found at
a point above the wall. We would, therefore, expect vorticity to tend to diffuse
away from this point toward the wall (as well as toward the free stream). To
keep the shear at the wall from increasing,an increase in pressure is, therefore,

required initially.

16



CONCLUSION

A method of determining the pressure gradient required to maintain a
constant wall shear in a boundary layer when given an initial shear profile
has been developed. The method also yields an analytic result for downstream
shear profiles in terms of tabulated universal functions. The theory has

been applied to the cases of profiles derived from a) constant suction over

a flat plate and b) injection normal to a flat plate with velocity v proportional

to IA/:;.

17



10.

REFERENCES

Goldstein, S., Modern Developments in Fluid Dynamics, (Clarendon Press,
Oxford, 1950), pp. 153-154.

Young, A. D., Modern Developments in Fluid Dynamics, High Speed Flow,
(Editor: Howarth, L.) (Clarendon Press, Oxford, 1953) p. 400.

Trilling, L., "The Incompressible Boundary Layer wiih FPressure Gradient
and Suction", J. Aero. Sci., 17, 335-42 (1950).

Rheinboldt, W., "Uber die Hussere Randbedingung bei den Grenzshichtgleichungen",
50 Jahre Grenzshichtforschung (Editors: GYrtler, H. and Tollmien, W.)
(Vieweg, Braunschweig, 1950), p. 328-333.

Jones, C. W. and Watson, E. J., Laminar Boundary Layers, (Editor: Rosenhead,
L.) (Clarendon Press, Oxford, 1963) Chap. V, p. 203.

Fox, L., Numerical Solution of Ordinary and Partial Differential Equations,
(Pergamon Press, Addison Wesley, 1962) pp. 252-253.

Murphy, George M., Ordinary Differential Equations and Their Solutions,
(D. Van Nostrand, Princeton, New Jersey, 1960).

Schlichting, H., Boundary Layer Theory, (Fourth Edition) (McGraw-Hill, New
York, 1960) pp. 270-273.

Iglisch, R., Exalste Berechnung der laminaren Reibungshicht an der
l4ngsangestromten ebenen Platte mit homogener absangung, NACA TM 1205 (1949)

Schlichting, H. and Bussman, K., Exalste LBsungen flir die laminare
Reibungschicht mit Absaugung und Ausblasen. Schriften der It. Abad. I.

Luftfahrtforschung 7B, No. 2 {1943)

18



z

0.0T75
C.125
N.175
De22H
0.275
0.325
0.375
N.6425
0475
NeH2H
N.575
0.625
NJ675
N.725
C.715
0.82%
0.R75
0.925
N.575
1.025
1.075
l1.125%
1.175
1.225

1.275 .
1.325
1.378°

1.425
1.475
1.525
1.575
1.625
l.675
1.725
1.775
1.825
1.875
1.925
1.975
2.02S
2.07S
2.125
2.175
2.225
2.275
2.325
2.375
2.425
2475
2.525

531

0.CO570
C.0i1467
C.07984
0.04944
0.07340
0.1CLln6
C.13311
0.16749
0.203935
Ca24173
0.28009
0.31835
0.35595
0.39243
042744
0.4€017
0.49227
052187
0.54954
0.5753C
0.559319
0.62127
0.641586
0.66022
C.6772¢6
0.69279
C. 70691

. 0.71970
0.73128

0.74173
0.75116
0.75967
0.76734
0.77426
0.78051
C.78615
0.79126
0.79589
0.80010
0.80392
0.80707
0.80978
0.81217
0.81433
0.81629
0.81808
0.81973
0.82124
0.82263
0.82391

TARLE

G32

3.0C006
C.0C031
0.00087
0.00184
0.00334

0.00541"

0.00811
0.01144
0.01536
0.01978&
0.02462
0.02975
0.03504
0.04037
0.04563
0.05074
0.05563
0.06023
0.06454
0.06853
0.07220
0.07555
0.07861
0.08139
0.08391
0.08619
0.08825
0.09011
0.09179
0.09331
0.09468
0.09592
0.09705
0.09807
0.09899
0.09983
0.10060
0.10130
0.10193
0.10251
0.10304
0.10353
0.10398
0.10439
0.10476
0.10511
0.10543
0.10572
0.10599
0.1C624

G4l

0.00500
0.01497
0.02984
0.04943
D.07348
0.10156
0.13317
0.16767
020440
0.24269
0.28190
0.32147
0.36095
0.39996
0.43822
0.47553
0.51171
0.54666
0.58026
0.61244
0.64314
0.67232
0.69993
0.72596
0.75041
0.77330
0.79465
D.81452
0.83295
0.85002
0.86581
0.88037
0.89380
0.90618
0.91758
0.92807
0.93774
0.94664
0.95484
0.96240
0.96938
0.97581
0.98175
0.98724
0.99232
0.99701
1.00136
1.00539
1.00913
1.01261
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G47?

0.00250
0.N00748%8
0.01492
0.02472
0.03674
0.05078
0.06658
0.08383
0.10219
0.12133
0.14092
N0.16068
0.18039
0.19984
0.21889
0.23744
0.25537
0.27264
0.28917
0.30492
0.31985
033392
0.34713
0.39945
0.37089
0.38147
0.39120
0.40013
0.40829
0.41572
0.42249
0.42864
0.43422
0.43930
0.44330
0.44809
0.45189
0.45536
0.45852
0.46140
0.46369
0.46563
0.46732
0.46884
0.47022
0.47149
0.47265
0.47371
0.47469
0.47560

G413

0.€CO56
0.C0280
0.C0782
0.01661
0.03006
0.04885
0.07339
0.10381
0.13993
0.18131
0.22730
0.27713
0.32995
0.38492
0.44125
N.49821
0.55513
D.E1144
0.66663
0.72025
0.77202
0.82157
0.86871
0.91330
0.95525
0.99454
1.03121
1.06532
1.09697
1.12630
1.15344
1.17854
1.20174
1.22319
1.264303
1.26137
1.27835
1.29407
1.30863
1.32212
1.33411
1.34514
1.35540
1.36497
1.37391
1.38223
1.38998
1.39720
1.40393
1.41020

G44

0.0C000
0.00005
0.00018
0.06050
C.00112
0.00214
0.00368
0.00583
0.00864
0.01215
0.01631
0.02107
0.02634
€.03200
C.C3794
0.04405
0.05022
0.05636
C.06240
0.06828
0.07396
0.07940
0.08458
0.08949
0.09412
0.09847
0.10256
0.10638
0.10994
C.11327
0.11636
C.11924
0.12192
0.12440
0.12671
0.12885
0.13084
0.13269
0.13441
0.13601
0.13749
0.13887
0.14016
0.14135
0.14247
0.14351
0.14448
0.14538
0.14623
0.14702
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7575
2.625
2.67H
2.725
Z.775
2.8295
25275
2.925
2975
3.025
3.07H
3.125
3.175
3.225
3.275
3.325
3.375
3.42%
3.475
34525
2.575
3.625
3.675
3.725
3.77¢
3.825
3,875
3.925
31.97%
4,025
4.075
4,125
4.175
4.225
4,275
44325
4,375
4.425
4.475
4,525
4,575
4.625
4,675
4,725
4.775
4,825
4,875
4.925
4.97%
5.025

G31

C.t2509
C.82618
0.82719
0.52813
0a 372500
0529821
N. #3056,
6.53125%
0.03190
0.#3250
0.83307
0.83359
C.23408
O.83454
C.63497
G.83537
0.83574
0.£361C
C.8364?7
083673
0.e3702
C.63729
0. 03755
0.23779
G.53801
C.t3822
0.83842
0.H3861
0.233679

S R ooy |

0.83895
0.83911
0.83925
0.83939
0.83952
0.83964
0.83976
0.83987
0.83997

0.84007 .

0.84016
0.84025
0.84033
0.84G40
0.84047
0.84054
0.54061
0.84067
0.84072
0.840178
0.84083

TABLE

532

0.10648
0.10669
0.10689
0.107G8R

G.10725
C.10741
D.10756
0.10770
0.10783
0.10795
0.10806
0.10817
N.10826
0.10836
0.10544
0.10352
0.10K60
0.10867
N.10873
0.10880
0.108¢26
0.10891
0.10896
0.10901
0.109Ceé
c.1091¢C
0.10914
0.10918
0.10921
0.10925
0.10928
0.10931
0.10934
0.10936
0.10939
0.10941
0.10943
0.10945
0.10947
0.10949
0.10951
0.10953
0.10954
0.10656
0.10957
0.10958
0.10960
0.10961
0.10962
0.10963

G41

1.01583
1.01883
1.02162
1.02421

1 NDLL2
Levze U

1.02889
1.03C99
1.03295
1.03479
1.03650
1.03811
1.03961
1.04101
1.04233
1.04356
1.04472
1.04580
1.C4682
1.04778
l.04867
1.04952
1.05031
1.05106
1.05176
1.05242
1.05304
1.05362
1.05418
1.05469
1.05518
1.05564
1.05608
1.05649
1.05687
1.05723
1.05758
1.05790
1.05821
1.05849
1.05876
1.05902
1.05926
1.05949
1.05970
1.05951
1.06010
1.06028
1.06045
1.06061
1.06076
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G4?

N.47643
C.4772C
0.47792
N.47858
N.479149
0.479754
0.480273
D.48078
N.48124
0.48165
N.48206
N.43243
0.48273
N.48310
048340
0.40363
0.48394
0.408419
0.48442
D.4K464
N.&4484
Ne4BH03
0.48521
0.48537
048553
0.408568
0.48582
Ce48595
0.42607
N.48619
0.48629
0.48640
0.43649
0.48658
0.48667
0.48675
0.485682
0.48689
0.48696
0.48702
0.48708
0.48714
0.48719
0.48B724
0.48729
0.48733
0.48737
0.48741
0.48T45
D.48T749

G43

1.41605
1.42150
1.42660
1.43136
1.43581
1.43998
l1.44348%
1.44753
1.45C36
1.45417
1.45718
1.46001
1.462617
l.46517
l.46751
1.46072
1.471820
1.47375
1.47559
1.47723
1.47896
1.48050
1.42196
1.48333
l.4P462
1.48584
1.48659
1.48808
1.48910
1.490C7
1.49059
149185
1.492¢7
1.49345
1.49418
1.49487
1.49552
1.49613
1.49672
l.49727
1.49779
1.49828
1.49875
1.49919
1.49961
1.50C00
1.50037
1.50072
1.50106
1.50137

Ga4

D.14776
C.14545
0.1491C
Cela371
0:.15028
0.15081
C.15131
0.15178
0.15222
0.15264
0.15303
D0«415340
Ce15374
0«15407
C.15438
C.15467
015494
0.15520
G.15544
0.15567
0.15589
0.15609
0.15629
Cel5647
C.15664
Ne15680
Je15696
0.1571¢C
0015724
0.15737
015750
0.15761
C. 15772
0.15783
0.15793
0.15802
De.15811
0.15819
0.15827
0.15835
C.15842
0.15849
C.15855
0.15861
0.15867
0.15872
0.15877
£.15882
0.15887
0.15891
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5125
1175
Be225
el TH
54325
Y9375
5425
5475
Dev2%
5.57%
Heh 25
5.675
B.725
e 15
34825
S e TS
De925
567 TH
54025
AL 01TH
fal?5
6.175
Hel?H
H.2T5
Fa325
6HL.3T7TH
6425
HedTH
64525
HeDHTH
6.625
b.675
6.725
6775
6.525
6.875
6.625
6.975
7.025
1.C75
7.125
7.175
71.225
T.275
1.325%
7.375
T.425
T.475
T.525%
10.425

(31

64052
Ce4094
CaBalil
GaBalh
34108
Cest4l1ll
DeH4]lh
C.k54117
Cal4120
Cot4123
Gt 412y
C.%4127
Cav4120
C.841732
C.8413%4
ettt l 35
C.t4l37
C.t413G
C.c4140
Cef4142
G.d4143
34144
GearR4lat
Corita147
C.84148
C.84149
De44150
0.64151
C.841n1
Q.84152
0.84153
O.t4154
C.8415¢4
0.8415>
C.54155
C.3415¢
N.84156
C.64157
C.B4157
C.84158
0.84158
0.8415%8
0.84159
0.84159
0.84159
C.84160
0.84160
0.84160
N.84160
0.84163

TABLE

G32

0.10965
0.109606
D.10966
0.10968
0.10969
0.10969
0.10570
$.10970
1.10971
1.10971
C.10972
0.1N972
0.1C0973
0.10373
0.10974
010974
0.10974
010975
0.10375%
N.,10975
0.10975
0.10976
0.10976
0.10976
0.1077¢

0.10776
0.10977

0.10977
0.10977
0.10977
0.10977
0.10977
0.10977
0.10978
0.10978
0.10978
0.10978
0.10978
0.10978
0.10978
0.10978
0.10978
0.10978
0.10978
0.10978
0.10978
0.10978
0.10979
0.10979

G4l

.1.06104

1.06116
1.06128
i.06135
1.06150
1.06160
1.06169
1.06178
1.06187
1.06194
1.06202
1.06209
1.06215
1.06222
1.06227
l. 06233
1.C06238
1.062473
1.06248
1.06252
1.06?756
1. 06260
1.06263
1.062€6
1.06270
1.06273
1.06275
1.06278
1.06280
1.06283
1.06285
1.06287
1.06289
1.06290
1.06282
1.06294
1.06285
1.06296
1.06298
1.06299
1.06300
1.06301
1.06302
1.06303
1.06304
1.06305
1.06305
1.06306

- 1.06307

1.06315
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G4?

N.48755
Ne&4RTHR
Ne4nrTEL

N 0T
et U

Ne4nTEE
Ne4nTER
Nea2770
0.48772
Nebat774
0,.409774
048778
0.427773
N.48781
Ne4HTR?
ND.48784
0e49785
De48784
Coa8787
C.48788
De4RTRY
CeaBT90C
Ce481751
Ne48792
De487972
D.487973
0.48794
0.4BT795
N.4879%5
0.48796
Na4BT796
Ce4aBT97
N.48797
D.48738
0.48792
0.48798
0.48799
0.48799
N.48739
0.4880C
0.48200
0.48800
D.48800
0.48801
N.488C1
0.48801
0.48801
0.48801
0.48802
0.48802
0.48804

G43

1.5C195
l.50221
1.50247
1.50270
1.50293
1.50314
1.57334
1.50352
1.,506370
1.50387
1.50403
1.504138
l.50432
1.50445
1.50458
1.5C04170
1.5044%1
1.50491
1.505C1
1.50510
1.50519
1.50527
1.50535%
1.57547
1.50%49
1.50556
1.50562
1.50568
1.50573
1.50578
1.50583
1.50587
1.50591
150595
1.50599
1.50607
1.50606
1.50609
1.5n617
1.50614
1.50617
1.5N619
1.50621
1.50623
1.50625
1.5C627
1.50629
1.50630
1.50632
1.50651

G44

C.158599
C.15903
0.15906
£.15910
.15913
C.15416
C.15918
C.15921
0.15323
C.15922¢6
0.15928
0.1533C
GCel5432
0.15934
0.154936
0.15937
0.15339
0.15940
0.15942
0.15943
C.15944
0.15946
0.15947
0.15948
0.15949
0.15950
0.15950
0.15951
0.15952
0.15953
0.15953
0.15954
C.15955
0.15955
C.15956
C.15956
0.15957
0.15957
0415957
U.15958
€.15958
0.15959
0.15959
0.15959
C.15G659
0.15960
C.15960
0.15960
0.15960
0.15963
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